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Bestimmtes Integral 

Gesucht ist die Fläche A unter der Funktion xxf =)(  zwischen den Grenzen 0 und 1 

 

 
 

Die Fläche kann durch eine Summe von Rechtecken approximiert werden. Dazu wird das 

Intervall   [0; 1] in n gleiche Subintervalle unterteilt: 
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n

xx ==  ;  1=nx  

Der Abstand zwischen zwei x-Werten ist:  x
n

xx ii ==− −

1
1   (i = 1,2,......,n) 

Die Fläche A kann approximiert werden durch eine Summe von Rechtecken oberhalb der 

Kurve f(x) und eine Summe von Rechtecken unterhalb der Kurve f(x). 

 

Oberhalb xxf =)(     
n

k

n
A

n

k

o 
=

=
1

1
  

Unterhalb xxf =)(   
=

−
=

n

k

u
n

k

n
A

1

11
  

Au < A < Ao 
 

Für n → geht x → 0, daher konvergieren die Flächen Au und Ao gegen A. 
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Die Schreibweise für diesen Grenzwert ist das Integralzeichen in der Form: 
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Bestimmtes Integral 
 

Das bestimmte Integral der Funktion f aus dem abgeschlossenen Intervall ];[ ba  ist die reelle Zahl  
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Beispiele 
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Berechnung des bestimmten Integrals  

 

Beispiel 

Fläche von 0 bis x 

2

4

3
2)( xxxA +=   (Rechteck und Dreieck) 

 

Randfunktion:  25,1)( += xxf  

 

 

Es gilt )()(' xfxA =   → )(xA  ist Stammfunktion von )(xf . 

 

Fläche von 1=x  bis 4=x :  25,1775,220)1()4( =−=− AA  

 

 

Hauptsatz der Differential- und Integralrechnung 
 

Ist f eine im Intervall ];[ ba stetige Funktion mit 𝑓(𝑥) ≥ 0  und F irgendeine Stammfunktion von f, so 

ist: 
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Beispiel  (Grundintegrale)  
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Beispiel (Variable bestimmen) 
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Beispiel (Partielle Integration) 
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Beispiel (Substitution) 

 −
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1. Möglichkeit 

Unbestimmtes Integral lösen 
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dx

dz
z  → 

2
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Stammfunktion an den Grenzen bestimmen 

( )
3

26
32

3

1
6

2

5,1
=








−x  

 

2. Möglichkeit 

Grenzen substituieren 

32 −= xz  → 2' ==
dx

dz
z  → 

2
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Neue Grenzen für z:  2=x  → 134 =−=z  

    6=x  → 9312 =−=z  
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Eigenschaften bestimmter Integrale 
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Beispiele 
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Flächenberechnungen 

 

a) Eine Funktion f(x) ist Randkurve  
 

Fall 1)  𝑓(𝑥) ≥ 0  in [𝑎;  𝑏] 

  )()()()( aFbFxFdxxfA
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Beispiel: 
f(x) = x²   𝑎 = 0; 𝑏 = 1 
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Fall 2)   f(x) ≤ 0  in [a;  b] 

 
Beispiel:  𝑓(𝑥) = −𝑥²   𝑎 = 0; 𝑏 = 1   → Fläche muss auch 1/3  sein. 
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Allgemein:   )()()()( aFbFxFdxxfA
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Fall 3)   Fläche oberhalb und unterhalb der x-Achse  (f(x) beliebig  in [a;  b]) 

 
 

Zuerst müssen die Nullstellen berechnet werden. 
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Beispiel 1 

Wie groß ist das Flächenstück, das im Intervall ]2;2[− zwischen der Kurve der Funktion 

xxy −= ³  und der x – Achse liegt? 

Nullstellen 1−=x ;  0=x  und  1=x   → 4 Integrale   → 5
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Beispiel 2 

Wie groß ist das Flächenstück, das im Intervall ]3;1[− zwischen der Kurve der Funktion 

45² +−= xxy  und der x – Achse liegt? 

Nullstellen: 1=x  und  4=x     A = 24 
 

Beispiel 3 

Wie groß ist das Flächenstück zwischen der Kurve y = )²1²25,0( −− x  und der x – 

Achse mit den Nullstellen als Grenzen 

A =  32 / 15 
 

Beispiel 4 

Wie groß ist das Flächenstück zwischen der Kurve y = f(x) = x² − 1 und der x – Achse 

mit den Nullstellen als Grenzen 

 

   y = f(x) = x² − 1 → Nullstellen  x1 = −1  und x2 = 1 
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Beispiel 5 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beispiel 6 
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b) Fläche zwischen zwei Funktionen   y = f(x) und y = g(x) 

 

Fall 1:   Schnittpunkte sind Grenzen 

 
Zuerst müssen die Schnittpunkte berechnet werden. 
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Beispiel 1 

Wie groß ist der Flächeninhalt, der von den Kurven der Funktionen 2² +−= xy  und 

6² −= xy  zwischen den gemeinsamen Schnittpunkten eingeschlossen wird?  

Schnittpunkte bei 2−=x  und  2=x       
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Beispiel 2 

Wie groß ist der Flächeninhalt, der von den Kurven der Funktionen 14² +−= xxy  und 

²7 xy −=  zwischen den gemeinsamen Schnittpunkten eingeschlossen wird? 

Schnittpunkte bei 1−=x  und  3=x       
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Fall 2:   Vorgegebene  Grenzen 
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Zuerst müssen die Schnittpunkte berechnet werden. 
 

 

4321 AAAAA −+−=  
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Beispiel 1 

y = f(x) = x² − 1           y = g(x) = 3  Fläche für 0 ≤ x ≤ 4  

→ Schnittpunkte   x1 = −2  und x2 = 2 

 

|∫ 3 − (𝑥2 − 1)𝑑𝑥
2

0

| + |∫ 3 − (𝑥2 − 1)𝑑𝑥
4

2
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16
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Beispiel 2 

Es ist die Fläche zwischen den Kurven y = -x² + 2x + 2 und y = x² - 2 in den Grenzen von 0 

bis 3 zu berechnen. →  

Lösung: Schnittpunkte bei 1−=x  und  2=x   A = 31 / 3 
 

Beispiel 3 

 
 

Beispiel 4 

 
 

 

Flächen mit Parametern 
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Beispiel 1 

Gegeben ist die Funktion 𝑦 = 𝑓𝑎(𝑥) = 𝑥√1 − (
𝑥

𝑎
)

2
 mit dem Parameter 𝑎 > 0 

 
a) Berechnen Sie die Größe der Fläche A, welche der Graph der Funktion f1(x), also für a=1, 
     mit der x-Achse einschließt. 
 
b) Für welchen Wert des Parameters a beträgt die von fa(x) und der x-Achse 

eingeschlossene Fläche 6 Flächeneinheiten. 

 

Nullstellen: 0=x ;  1=x  
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Stammfunktion an den Grenzen bestimmen 
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Nullstellen: 0=x ;  ax =  
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Stammfunktion an den Grenzen bestimmen 

6
3

2

33
)1(

3
1

3

2
22

0

2

22
0

5,1
2

2

2

==+=







−−+




























−−=

−

a
aa

a

xa

a

xa
A

a

a

  → 3=a  

 
Beispiel 2 

Welche Parabel mit der Gleichung der Form 𝑦 = 𝑓(𝑥) = (𝑥 − 𝑐)2,    𝑐 > 0 
begrenzt mit den Koordinatenachsen eine Fläche von 9 
Flächeneinheiten? 
 

Grenzen:  0=x  und Nullstelle  cx =  
 

9
3

1
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3

1
)( 3

0

3

0

2 =+=







−=−=  ccxdxcxA

cc

   → 3=c  

 
 
Beispiel 3 

Bestimmen Sie die Parabel  𝑦 = 𝑓(𝑥) = 𝑎𝑥² − 4𝑎,   𝑎 > 0, welche mit der 
x-Achse eine Fläche von 3 Flächeneinheiten einschließt. 
 

Nullstellen:;  2=x  
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3
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Beispiel 4 

Bestimme Nn  so, dass die Funktion 
nxxf =)(  die Fläche des Dreiecks mit den Eckpunkten 

)0;1();0;0( AO  und )1;1(B  halbiert. 

Fläche Dreieck:  
2

1
11

2

1
==A  

Fläche:    =
+

=

1

0
4

1

1

1

n
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 → 3=n  

 
 
 
 
 
 


